PRECODEPA – one of the CGIAR’s first research networks

Establishing a regional program
In April 1976, CIP opened an office in Turrialba, Costa Rica, hosted by the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). My role there was to support the regional office based in Toluca, Mexico, and to carry out research on breeding potatoes to tropical conditions, and once we’d realized the problem of bacterial wilt, searching for resistance to this insidious disease.


In July 1997, the regional leader, Ing. Oscar Hidalgo (a Peruvian bacteriologist) departed for his PhD studies in the USA, and instead of transferring me to Toluca, the Turrialba office became the regional headquarters. And in doing so, my responsibilities changed considerably; I became CIP’s primary link with the national potato programs in Mexico, Central America and the Caribbean.

I was supported by my boss in Lima, Dr Ken Brown, who had joined CIP in early 1976 to support the Outreach Program, and soon becoming the head of the Regional Research Program, replacing Dick Wurster. Ken was a cotton physiologist, and had spent most of his career in various parts of Africa, especially Nigeria, and just before joining CIP had headed a cotton research project in Pakistan. Ken was a fantastic person to work with – he knew just how to manage people, was very supportive, and the last thing he ever tried to do was micromanage other people’s work. I learnt a great deal about program and people management from Ken.

Towards the end of 1977, Dr John Niederhauser, proposed the idea of a cooperative regional network among several countries. I worked closely with John over about six months developing and refining ideas, and travelling together to meet program leaders (and even ministers and vice ministers of agriculture) in six countries: Mexico, Guatemala, Honduras, Costa Rica, Panama, and the Dominican Republic. In April 1978 a meeting was held in Guatemala City to launch the Programa Regional Cooperativa de Papa – PRECODEPA, with funding from the Swiss Agency for Development and Cooperation (SDC).

PRECODEPA

The inaugural meeting of PRECODEPA in Guatemala City, April 1978. L to R (sitting): Ken Brown, me, Richard Sawyer, John Niederhauser (CIP), Carlos Crisostomo (ICTA-Guatemala), unknown. I don’t recognise/remember the two gentlemen standing in the rear.

The SDC was just the right donor agency – one with a long-term commitment. Although I’m not able to determine the current status of PRECODEPA, it was supported by the SDC for more than 25 years, and expanded from the initial six countries to 10 or more, with French and English-speaking countries participating. Of course the original members were all Spanish-speaking – one of the major advantages of this regional program in its early years.

For the next three years, much of my time as CIP’s regional leader was spent supporting PRECODEPA and contributing my own work on bacterial wilt and seed production. However, I have to say that my role during this period – especially during the inception design and development phase – has essentially been removed from the record. And for reasons I could never understand, John Niederhauser chose not to recognize the important contributions that CIP (and me) made to the overall success of PRECODEPA.

Why was PRECODEPA needed, and what did it achieve?
While potato was an important commodity in most of the countries of the region, it was never in the same league as other staples such as maize and beans. Mexico had (and still has) the largest area of potato cultivation in the region, but even this pales into insignificance compared to maize. While agriculture ministries supported potato production, this crop was not a top priority, nor did the countries have the resources (both finance and staff) to support and maintain a fully-rounded potato program. Thus the principal idea behind PRECODEPA was a distributed research effort among the member countries, with each taking leadership in one or more areas of potato research and production which had a high national priority, and sharing that expertise with the other members of the network. This also facilitated support from CIP in that CIP specialists were able to meet with their counterparts from one or two countries in the region rather than all of them, and then the national programs supporting each other, as explained earlier.

Thus, Mexico took a lead in seed potato production and late blight research (Phytophthora infestans; some of the pioneer research funded by the Rockefeller Foundation was carried out in the Toluca valley); Guatemala concentrated on post harvest storage, Costa Rica on bacterial wilt (Ralstonia solanacearum), and Panama on potato cyst nematode (Globodera spp.) After 40 years I cannot remember the lead activities for Honduras and the Dominican Republic. With support from the SDC and back stopping from CIP each country developed its capabilities in its lead area, offered training and technical support to the other members, and in turn received support from the others in those areas where it was ‘weaker’.

Among the first national members of PRECODEPA were Ing. Manuel Villareal (Mexico), who had once served as CIP’s regional leader for Region II, Ing. Alberto Vargas (Vice Minister) and Ing. Fernando Cartín from the agriculture ministry in Costa Rica, Ing. Roberto Rodriguez (IDIAP) from Panama, and Ing. Polibio Vargas from the Dominican Republic. Unfortunately, after 38 years, I am unable to remember the names of the Guatemala (ICTA) and Honduras representatives. In 1979, I think it was, Peruvian scientist Dr Jorge Christiansen was appointed to PRECODEPA and based in Guatemala.

The fact that all original members spoke Spanish was a huge advantage. This greatly facilitated all the nitty-gritty discussions needed to achieve consensus among the members about the advantages of working together – as equals. The fact that the SDC supported PRECODEPA for so many years is one indication of its success. On the SDC website there is this succinct assessment: PRECODEPA’s achievements include increases in yields, output and profitability; substantial reduction in the use of pesticides – representing savings for Central American farmers and reducing the impact on the environment and consumers; the beginnings of a processing industry (French fries, crisps) – meaning regional products entered a market previously dominated by their powerful northern neighbours; production of quality potato seed and the development of a regional potato seed market; and training for thousands of farmers and technicians.

I’m proud to have been part of this innovative program – one of the first such research networks or regional programs established by the centers of the CGIAR.

CIP’s direct involvement
CIP contributed specifically in a couple of areas. In an earlier post I have described the work we did on resistance to bacterial wilt. Some of those resistant materials found their way into the Costarrican seed potato program.

Seed production through rapid multiplication techniques was another important area, and I supported in this by seed production specialist Jim Bryan who spent a sabbatical year with me in 1979-80. We developed further (from Jim’s initial work in Lima) the techniques of stem, sprout and single-node cuttings [1], bringing these to the field to produce disease-free seed potatoes, and help establish a vibrant seed potato industry in Costa Rica.

Since I left CIP (in March 1981) PRECODEPA increased in size, and the members continued to share the coordination of the program among the members. As the information on the SDC website indicates, PRECODEPA was indeed the blueprint for other regional programs on maize and beans, and for other collaborative programs around the world. It was a model for the various consortia that have developed among the centers of the CGIAR and national program partners.

[1] Bryan, J.E., M.T. Jackson & N. Melendez, 1981. Rapid Multiplication Techniques for Potatoes. International Potato Center, Lima, Peru.

Cruza 148 . . . the serendipity of disease resistance

Just do a Google search on “Cruza 148” and and you will see more than 1,350 hits. Even Google Scholar generates more than 100 publications that make reference to Cruza 148. How did this potato clone from Mexico achieve its celebrity status? It is known for its resistance to bacterial wilt and late blight, and that it has been released in Burundi (as Ndinamagara), Uganda (as Cruza), Rwanda, and the Democratic Republic of Congo. Indeed, Greg Forbes (2006) reported that it’s grown in the ‘poorest of poor areas’, and suggested that Cruza 148 is ‘the Superman of potatoes’ [1]. So how was this potato clone discovered, and what steps were taken to validate its resistance to bacterial wilt?

I spent my first three years with CIP in Lima, but in mid-1976 Dick Sawyer posted me to then Region II (Mexico, Central America, and the Caribbean), to undertake research on adaptation of the potato to the lowland tropics, as part of the the Regional Research Program (formerly Outreach). So I landed in Turrialba, Costa Rica at the Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), where I was to remain for the next four and a half years, supported first by Head of Outreach Dick Wurster and then by Ken Brown after Dick left CIP. Deputy Director General-Research Ory Page was also keen to establish some specific research projects in the regions.

After refurbishing a screen-house and office space, and hiring a couple of field assistants, Jorge Aguilar and Moises Pereira, and getting to know the region, I finally started my research. I received a batch of 207 late blight resistant clones from CIP’s regional office in Toluca, Mexico that were planted in a first trial in July 1977 on the CATIE experiment station. There had been no cultivation (at least for more than 20 years) of any solanaceous crops [2]. Each clone was planted in a 5-hill plot, in a randomized complete block, with just a single plot replication per clone.

There was no problem with initial growth of all clones, despite the rather warmer and wetter growing conditions in Turrialba. But after a few weeks we noticed, in just one of two plants, the first signs of the asymmetrical wilt typical of bacterial wilt (Ralstonia solanacearum, formerly known as Pseudomonas solanacearum).

I was fortunate that I had a contact, Dr. Luis Carlos Gonzalez, in the Universidad de Costa Rica – Laboratorio de Fitopatología, an acknowledged expert in bacterial wilt who had completed his PhD studies under Professor Luis Sequeira at the University of Wisconsin-Madison. Luis Carlos soon confirmed the presence of bacterial wilt, and we took steps to carefully map the spread of the disease across all plots. Each week we carefully scored the presence/absence of wilt in every plant, and built up a comprehensive picture of the development of the disease among the clones under evaluation. But that mapping also showed us where there could be hotspots in the trial plots. After some 12 weeks or so, almost all of the clones were dead – except three apparently resistant, one of which was Cruza 148. Eight further clones showed only some slight symptoms of bacterial wilt.

Our first question was whether these disease-free clones had somehow escaped infection, even though we had the evidence that the disease was spread right across the site, and in the clones surrounding ‘resistant’ ones. Fortunately all three did produce a good crop of tubers, which we harvested and stored for future evaluation. After chitting we were ready for a second evaluation. We decided to use the same site on the experiment station, carefully tilling and mixing the soil to  ensure that the potatoes we planted would come into contact with the bacterium. Not long after sprouting, the two Indian varieties (I don’t remember the clone numbers, but hopefully our original data and reports, even the plot maps, are still filed away somewhere at CIP) succumbed to wilt, but Cruza 148 remained healthy, showing no signs of bacterial wilt.

We repeated the evaluation for a third time, using tubers harvested from the second evaluation plots. And once again in this third trial – in the same soil – Cruza 148 showed no signs of infection. But where had the resistance to bacterial wilt come from, and why was there such a high inoculum of the bacterium in these soils on the CATIE experiment station? Now although bananas were grown at CATIE, we did show that the bacterial strain was not the one that infected bananas, but Race 1 (as it was then classified).

It also happened that Luis Sequeira (a Costarrican by birth) was holidaying in Costa Rica and visited our plots in Turrialba. And very quickly, and based on his broader experience, he spotted a number of common weeds, family Asteraceae [2,3] that were wilting.

We collected samples, and undertook all the appropriate phytopathological tests to show that extracts from these weeds were pathogenic on potato. That finding led to us develop a research project looking at the persistence of the bacterium in these Turrialba soils, and how the incidence of bacterial wilt could be reduced through various agronomic practices.

Reports about Cruza 148 are still being published 34 years after its potential was first uncovered in those early Turrialba trials. Now, we know that it is a carrier of the bacterium, which is rather a disappointment. But Cruza 148 has been used a standard control variety in hundreds of disease resistance experiments, and Peter Schmiediche was one of the first CIP breeders to include Cruza 148 in his program. And as far as I know it is still grown in those central African countries. Even if it has been replaced, it achieved impact for many years providing important food for many farmers and their families. I remember discussing Cruza 148 with Jim Bryan. He pointed out that one of  its disadvantages was the coloured flesh, and that it would be unlikely to be adopted by farmers. We now know that was not the case. In fact I have read some reports that farmers in Burundi use the tuber flesh colour to identify tubers of Ndinamagara!

Cruza 148 is one of those happy accidents of germplasm evaluation – you sometimes never know just what might turn up. Maybe it’s not a ‘Superman’ but, rather by chance, it has played a significant role in confronting a serious disease of potatoes, and contributing to food security.

[1] http://130.226.173.223/lbnordic/PPT/1300_1325_Greg_Forbes_keynote.pdf

[2] Jackson, M.T., L.C. González & J.A. Aguilar, 1979. Avances en el combate de la marchitez bacteriana de papa en Costa Rica. Fitopatología 14, 46-53.

[3] Jackson, M.T. & L.C. González, 1981. Persistence of Pseudomonas solanacearum (Race 1) in a naturally infested soil in Costa Rica. Phytopathology 71, 690-693.

The images below show bacterial wilt in a mature potato plant, with the typical asymmetrical wilt, and the vascular system of the tuber exuding millions of bacterial cells.