Candles, paraffin lamps, electricity . . . and a ‘rule of thumb’

Once there were hundreds. Now there’s just Court No. 15, the last remaining (and carefully restored) courtyard of working people’s houses just south of Birmingham city center on the corner of Hurst and Inge Streets.

Court 15 of the Birmingham Back to Backs, with the Birmingham Hippodrome on the north (right) side. Just imagine what the area must have looked like in earlier decades with street upon street of these terraced and back to back houses.

This is the Birmingham Back to Backs, owned by the National Trust, which we had the pleasure of visiting a couple of days ago, and enjoyed a tour led by knowledgeable guide Fran Payne. This National Trust property should be on everyone’s NT bucket list.

Court 15 was completed in 1831 and its houses were occupied as recently as the mid-1960s, when they were condemned. Commercial premises on the street side were still being used as late as 2002.

Court 15 was a communal space for upwards of 60-70 men, women and children, living on top of one another, in houses that were literally just one room deep: built on the back of the terraces facing the street. Just imagine the crowding, the lack of running water and basic sanitation, leading to the spread of social diseases like tuberculosis or cholera that were common in the 19th century. Just three outside toilets for everyone.

Since coming into its hands in 2004, the National Trust has developed an interesting tour of three of the Court 15 houses, taking in the lives of families from the 1840s, 1870s, and 1930s known to be living there then. The tour, encompassing very narrow and steep (almost treacherous) stairs over three floors, takes you into the first 1840s house, up to the attic bedrooms, and through to that representing the 1870s. You then work your way down to the ground floor, and into the house next door. From the attic in that house, the tour passes into the former commercial premises of tailor George Saunders who came to Birmingham from St Kitts in the Caribbean and made a name for himself in bespoke tailoring. When Saunders vacated Court 15 in 2002 he left much of the premises as it was on his last day of trading.

A Jewish family by the name of Levi, was known to reside in one of the houses during the 1840s. The Levis had one daughter and three sons, and like many other families, Mr Levi practiced his trade (of making clock and watch hands) from his home.

On the top attic floor of this house there are two rooms still accessible on the street side, but have never been renovated.

In the next 1870s house, occupied by the Oldfields, who had many children – and lodgers! – there is already a coal-fired range in the kitchen, and paraffin lamps were used throughout for lighting. The children slept head-to-toe in a bed in the attic room, shared with the married lodgers. Modesty was maintained by a curtain.

By the 1930s, there was already electricity (and running water) in the house, occupied by an elderly bachelor George Mitchell.

The premises of George Saunders are full of all the paraphernalia of the tailoring business. An old sewing machine, and another for making buttonholes. Patterns for bespoke suits handing from the walls, and bolts of cloth stacked on shelves. There are some half-finished garments, others ready to collect. Until his death, George worked with the National Trust to document the last years of the Back to Backs.

Throughout the houses there are many contemporary pieces of furniture and ornaments. My eye was caught by this particularly fine pair of (presumably) Staffordshire rabbits.

Finally, no visit to the Birmingham Back to Backs would be complete without a look inside Candies, a Victorian sweet shop on the corner of Hurst and Inge Streets at No. 55, purveyor of fine sweets that I remember from my childhood. What a sensory delight! In fact, tours of the Back to Backs start from outside Candies, so there’s no excuse.

And finally, what about that ‘rule of thumb’ I referred to in the title of this post. Well, while we were looking at the sleeping arrangements for the Oldfield children in the 1870s, Fran Payne reached under the bed for the gazunda, the communal chamber pot (‘goes under’). In the darkness, she told us, this how you could tell, with the tip of your thumb, whether a chamber pot was full or not. Dry: OK. Wet: time to go downstairs to the outside toilet in the courtyard.

I mentioned that our visit to the Back to Backs was very enjoyable, but it’s not somewhere that I would have made a special trip. We had to be in Birmingham on another errand, and since it was just a hop and a skip from the central Post Office, we took the opportunity. The Birmingham Back to Backs are a special relic of this great city of 1,000 trades.

 

The Birmingham Class of ’71: plant genetic resources pioneers

Pioneers. That’s what we were. Or, at least, that’s what we thought we were.

Five individuals arriving at The University of Birmingham’s Department of Botany in September 1970 to study on the one-year MSc degree course Conservation and Utilization of Plant Genetic Resources (CUPGR).

Professor Jack Hawkes was the Course Leader, supported by Dr Trevor Williams (as Course Tutor) [1].

Professor Jack Hawkes (L) and Dr Trevor Williams (R)

The MSc course had its first intake (of four students from Canada, Brazil, and the UK) in September 1969. Twenty years later (which was celebrated at the time), hundreds of students had received training in genetic conservation at Birmingham. The course would continue to flourish for a further decade or so, but by the early 2000s there was less demand, limited financial resources to support students, and many of the staff at the university who were the lynch-pins of teaching on the course had moved on or retired.

However, the course had made its impact. There is no doubt of that. Birmingham genetic resources graduates were working all around the world, leading collection and conservation efforts at national levels and, in many cases, helping their countries—and the world—to set policy for the conservation and use of plant genetic resources for food and agriculture (PGRFA). At the FAO conference on PGRFA held in Leipzig, Germany in 1996, for example, about 50 of the national delegations were led by, or had members, who had received training at Birmingham.

Former Birmingham MSc and Short Course PGR students (and two staff from IPGRI), at the Leipzig conference in 1996. Trevor Sykes (class of 1969) is wearing the red tie in the middle of the front row. Just two former students who attended the conference do not feature in this photo.

The Class of ’71
So, in September 1970, who comprised the second CUPGR cohort? We came from five countries:

  • Felix Taborda-Romero from Venezuela
  • Altaf-ur-Rehman Rao from Pakistan
  • Ayla Sencer from Turkey
  • Folu Dania-Ogbe from Nigeria
  • Mike Jackson (me!) from the UK

Having just graduated a couple of months earlier from the University of Southampton with a BSc degree in Botany and Geography, I was the youngest of the group, just approaching my 22nd birthday. Folu was almost four years my senior, and Ayla was perhaps in her late twenties or early thirties, but I’m not sure. Altaf was 34, and Felix the ‘elder’ of the class, at 38.

I guess Ayla was the only one with a specific genetic resources background, coming to Birmingham from an agricultural research institute near Izmir, and having already been involved with conservation work. Felix and Altaf were both academics. As recent graduates, Folu and I were just starting to think about a career in this new field of plant genetic resources. We wouldn’t be disappointed!

Studying alongside mature students who were not only older than my eldest brother (nine years my senior), but who had taken a year out from their jobs to study for a higher degree, was a novel experience for me. There was also a language barrier, to some extent. Felix probably had the weakest English skills; Ayla had already made some good progress before arriving in Birmingham but she struggled with some aspects of the language. Both Altaf and Folu spoke English fluently as a second language.

We occupied a small laboratory on the north corridor, first floor of the School of Biological Sciences building, just a couple of doors down from where Jack, as Mason Professor of Botany and Head of Department, had his office, and just across from Trevor’s office. In 1981, when I returned to Birmingham as Lecturer in Plant Biology, that same room became my research laboratory for six or seven years.

Folu and myself had desk space on one side of the lab, and the others on the other side. We spent a lot of time huddled together in that room. In order to save us time hunting for literature in the university library, we had access to a comprehensive collection of photocopies of many, if not most, of the scientific papers on the prodigious reading lists given to us.

Richard Lester

We had a heavy schedule of lectures, in crop evolution, taxonomic methods, economic botany (from Dr Richard Lester), population genetics and statistics (from staff of the Department of Genetics), computer programming and data management (in its infancy then), germplasm collection, and conservation, among others. At the end of the course I felt that the lecture load during that one year was equivalent to my three-year undergraduate degree course. We also had practical classes, especially in crop diversity and taxonomy, and at the end of the teaching year in May, we had to sit four written exam papers, each lasting three hours.

There were also guest lectures from the likes of experts like Erna Bennett (from FAO) and Jack Harlan from the University of Illinois.

We also had to choose a short research project, mostly carried out during the summer months through the end of August, and written up and presented for examination in September. While the bulk of the work was carried out following the exams, I think all of us had started on some aspects much earlier in the academic year. In my case, for example, I had chosen a topic on lentil evolution by November 1970, and began to assemble a collection of seeds of different varieties. These were planted (under cloches) in the field by the end of March 1971, so that they were flowering by June. I also made chromosome counts on each accession in my spare time from November onwards, on which my very first scientific paper was based.

At the end of the course, all our work, exams and dissertation, was assessed by an external examiner (a system that is commonly used among universities in the UK). The examiner was Professor Norman Simmonds, Director of the Scottish Plant Breeding Station (SPBS) just south of Edinburgh [2]. He made his scientific reputation working on bananas and potatoes, and published several books including an excellent text on crop evolution [3].

Then and now
So how did we all end up in Birmingham, and what happened after graduation?

Felix received his first degree in genetics (Doutor em Agronomia) in 1955 from the Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo in Brazil. He was a contemporary of Almiro Blumenschein, who went on to collaborate with geneticist and Nobel Laureate Barbara McLintock on the maizes of South America, and head the Brazilian agricultural research institute EMBRAPA (which is the parent organization for the Brazilian national genebank CENARGEN).

Returning to Venezuela, Felix was involved (from 1956-1961) with a national project to breed the first Venezuelan hybrid corns and to organize commercial seed production while also looking after a collection of local varieties and races of corn.

In 1961 he started to work in the Facultad de Agronomía at the Universidad del Zulia, now one of the largest and most important universities in Venezuela. It seems he found out about the Birmingham course in 1969 through contact with Dr Jorge León, a Costarrican botanist working for IICA who had also been worked at FAO in genetic resources, and was a contemporary of Jack Hawkes in the 1960s genetic resources movement. León is second from right, standing, in the photo below. But Felix had also been inspired towards plant genetic resources by the book Plants, Man and Life by American geneticist Edgar Anderson.

Felix self-financed his studies at Birmingham, having taken a sabbatical leave from his university, and arriving in Birmingham by the middle of August. In December 1970, Felix returned briefly to Venezuela to bring his young wife Laura and his newly-born son Leonardo to Birmingham. They took up residence in a house owned by Jack Hawkes in Harborne, a suburb close to the university.

His dissertation, on the effect on growth of supra-optimal temperatures on a local Venezuelan sorghum variety, was supervised by plant physiologist Digby Idle. Having been awarded his MSc (the degree was conferred in December 1971), Felix returned to his university in Maracaibo, and continued his work in sorghum breeding. He was one of the pioneers to introduce grain sorghums in Venezuela, and continued working at the university up until about five years ago when, due to the deteriorating economic and social situation in his native country, Felix and Laura (who has an MSc degree from Vanderbilt University) decided to move to Florida and enjoy their retirement there. His three sons and six grandchildren had already left Venezuela.

Felix and I made contact with each other through Facebook, and it has been wonderful to catch up with him after almost five decades, and to know that since his Birmingham days he has enjoyed a fruitful career in academia and agricultural research, and remains as enthusiastic today, in his mid-eighties, as he was when I first knew him in September 1970.

Altaf was born in Faisalabad in December 1936, and when he came to Birmingham in 1970 he was already Assistant Professor in the Department of Botany at the University of Agriculture in Faisalabad. He had received his BSc (Agric.) degree from that university in 1957, followed by an MSc (Agric.) in 1962.

I cannot remember the topic of his dissertation nor who supervised it, perhaps Richard Lester. After graduation he moved to Bangor University to complete a PhD in 1974 on the genetic variation and distribution of Himalayan wheats and barleys, under the supervision of Professor John Witcombe (from whom I obtained the various photos of Altaf). In 1974 he joined a joint Bangor University-Lyallpur University to collect wheats and barley in northern Pakistan.

He continued his teaching at Faisalabad until 1996 when he retired as Professor of Botany. But he wasn’t finished. He joined the Cholistan Institute of Desert Studies at Islamia Universty and was director from 1998 to 2000. Sadly, in December 2000, just four days after his 64th birthday, Altaf passed away, leaving a wife, two daughters and four sons. Remembered for his devotion to plant genetic resources and desert ecology, you can read his obituary here.

Genetic resources conservation in Turkey received a major boost in the mid-1960s when an agreement was signed between the Government of Turkey and the United Nations Special Fund to establish a ‘Crop Research and Introduction Centre‘ at Menemen, Izmir. The Regional Agricultural Research Institute (ARARI, now the Aegean Agricultural Research Institute) became the location for this project, and Ayla was one of the first scientists to be involved.

Ayla came to Birmingham with a clear focus on what she wanted to achieve. She saw the MSc course as the first step to completing her PhD, and even arrived in Birmingham with samples of seeds for her research. During the course she completed a dissertation (with Jack Hawkes) on the origin of rye (Secale cereale), and she continued this project for a further two years or so for her PhD. I don’t recall whether she had the MSc conferred or not. In those days, it was not unusual for someone to convert an MSc course into the first year of a doctoral program; I’m pretty sure this is what Ayla did.

Completing her PhD in 1973 or 1974, Ayla continued to work with the Turkish genetic resources program until 1981 when she accepted a position at the International Maize and Wheat and Improvement Center (CIMMYT) near Mexico City, as the first curator of the center’s wheat collection.

I believe Ayla stayed at CIMMYT until about 1990 or so, and then returned to Turkey. I know that she has retired with her daughter to a small coastal town southwest from Izmir, but I’ve been unable to make contact with her directly. The photo below was sent to me by Dr Tom Payne who is the current curator of CIMMYT’s wheat collection. He had dinner with Ayla a couple of years ago during one of his visits to Turkey.

Folu married shortly before traveling to Birmingham. Her husband had enrolled for a PhD at University College London. He had seen a small poster about the MSc course at Birmingham on a notice board at the University of Ibadan, Nigeria where Folu had completed her BSc in Botany. She applied successfully for financial support from the Mid-Western Nigeria Government to attend the MSc course, and subsequently her PhD studies.

Dr Dennis Wilkins

Before coming to Birmingham, Folu had not worked in genetic resources, but had a flair for genetics. Like me, she hoped that the course would be a launch pad for an interesting career. Her MSc dissertation—on floating rice—was supervised Dr Dennis Wilkins, an ecophysiologist. In the late 70s and early 80s, Dennis supervised the PhD of World Food Prize Laureate Monty Jones, who is now the Minister of Agriculture, Forestry and Food Security in Sierra Leone.

After completing her MSc, Folu began a PhD under the supervision of Trevor Williams on the taxonomy of West African rice, which she completed in 1974. To successfully grow her rice varieties, half of one glasshouse at the department’s garden at Winterbourne was successfully converted to a rice paddy.

In this photo, taken during her PhD studies, Folu’s mother (who passed away in January 2018) visited her in Birmingham. Folu can’t remember the three persons between her and her mother, but on the far left is Dr Rena Martins Farias from Brazil, who was one of the first cohort of MSc students in 1969.

Folu also had the opportunity of joining a germplasm collecting mission to Turkey during 1972. In this photo, Folu (on the right) and Ayla (on the left) are collecting wheat landrace varieties.

Returning to Nigeria, Folu joined the Department of Plant Biology at the University of Benin, Benin City until 2010, when she retired. She taught a range of courses related to the conservation and use of plant genetic resources, and conducted research on the taxonomy of African crop plants, characterization of indigenous crops from West Africa, and the ethnobotany of useful indigenous African plants. She counts among her most important contributions to genetic resources the training courses she helped deliver, and the research linkages she promoted among various bodies in Nigeria. She has published extensively.

After retirement from the University of Benin, she was seconded to the new Samuel Adegboyega University at Ogwa in Edo State, where she is Professor and Dean of the College of Basic and Applied Sciences. She has three children and five grandchildren.

As for myself, I was the only member of our class to be interviewed for a place on the MSc course, in February 1970. I’d heard about it from genetics lecturer at Southampton, Dr Joe Smartt, who stopped me in the corridor one day and gave me a pamphlet about the course, mentioning that he thought this would be right up my street. He wasn’t wrong!

However, my attendance was not confirmed until late August, because Jack Hawkes was unable to secure any financial support for me until then.

Trevor Williams supervised my dissertation on the origin of lentil (Lens culinaris), but as early as February 1971, Jack Hawkes had told me about an opportunity to work in Peru for a year after I’d completed the course, looking after a germplasm collection of native potato varieties at the newly-established International Potato Center (CIP) in Lima. In October 1971 I began a PhD (under Jack’s supervision) on the relationships between diploid and tetraploid potatoes (which I successfully defended in October 1975), and joined CIP in January 1973. Continuing with my thesis research, I also made several potato collecting missions in different regions of Peru.

From 1976-1981 I continued with CIP as its regional research leader in Central America, based in Costa Rica, working on disease resistance and potato production. I spent a decade back at The University of Birmingham from April 1981, mainly teaching on the genetic resources MSc course, carrying out research on potatoes and legumes, and supervising PhD students.

In 1991, I joined the International Rice Research Institute (IRRI) at Los Baños in the Philippines as the first head of the Genetic Resources Center, looking after the International Rice Genebank, and managing a major project to collect and conserve rice genetic resources worldwide. In 2001, I gave up research, left the genebank, and joined IRRI’s senior management team as Director for Program Planning and Communications, until 2010 when I retired.

But I’ve not rested on my laurels. Since retirement, I’ve organized two international rice science conferences for IRRI in Vietnam and Thailand, co-edited a second book on genetic resources and climate change, and led a review of the CGIAR’s genebank program.

My wife Steph is a genetic resources graduate from Birmingham, in 1972, and she joined me at CIP in July 1973 after leaving her position at the Scottish Plant Breeding Station where she helped to curate the Commonwealth Potato Collection (CPC).

We have two daughters, Hannah and Philippa (both PhD psychologists), and four grandchildren.

Sitting (L to R): Callum, Hannah, Zoe, Mike, Steph, Elvis, Felix, and Philippa. Standing: Michael (L) and Andi (R).

Looking back at the past five decades, I think I can speak for all of us that we had successful careers in various aspects of the conservation and use of plant genetic resources, repaying the investments supporting us to study at Birmingham all those years ago. What a journey it has been!

—————————–

[1] Trevor left Birmingham at the end of the 1970s to become the first Director General of the International Board for Plant Genetic Resources (now Bioversity International) in Rome.

[2] The SPBS merged with the the Scottish Horticultural Research Institute in Dundee in 1981 to become the Scottish Crops Research Institute. It is now the James Hutton Institute.

[3] Simmonds, NW (ed), 1976. Evolution of Crop Plants. Longman, London. A second edition, co-edited with Joe Smartt was published in 1995.

 

Learning about crop wild relatives

Much of my work with plant genetic resources has concerned the conservation and use of landrace varieties, of potatoes and rice.

Diversity in potatoes and rice

Yes, I have done some work with wild species, and helped occasionally with collection of wild species germplasm. In terms of research, I managed an active group of scientists at IRRI in the Philippines working on the biosystematics of rice (mainly AA genome species relationships). I also had undergraduate and postgraduate students work on the wild species of Lathyrus and potatoes during the years I taught at The University of Birmingham.

I made just one short collecting trip with Jack Hawkes in early 1975, into the Andes of Central Peru to find wild potatoes. That was a fascinating trip. He knew his potato ecology; he could almost smell them. On returning to the UK in 1981, I joined my colleague Brian Ford-Lloyd to collect wild beets in the Canary Islands, and some years later assisted one of my PhD students, Javier Francisco-Ortega, to collect seeds of a forage legume in Tenerife. I wrote about these two collecting trips recently.  I also helped to collect some wild rices during a visit to Costa Rica in the late 1990s but, in the main, orchestrated a major germplasm collecting program while leaving the actual collecting to my other colleagues in IRRI’s Genetic Resources Center.

One of my teaching assignments at Birmingham was a 10-week module, two or three classes a week plus plus an afternoon practical, on crop diversity and evolution. Many of the world’s most important crops such as wheat and barley, and a plethora of legume species such as lentil, chickpea, and faba bean originated in the so-called Fertile Crescent of the Middle East. Apart from a couple of short trips to western Turkey, I had limited experience of Mediterranean environments where these crops were domesticated. I’ve since been in Syria a couple of times in the 1990s.

That was all rectified in at the end March-early April 1982¹ when I had the good fortune to participate in a course—two weeks long if my memory serves me well—in Israel, organized by Profs. Gideon Ladizinsky and Amos Dinoor of the Hebrew University of Jerusalem, at the Rehovot campus near Tel Aviv.

Gideon Ladizinsky explains the ecology of wild lentils (or is that wild chickpea?) while Amos Dinoor looks on.

I recall that the course was funded (or at least supported in part) by the International Board for Plant Genetic Resources (IBPGR). Among the other participants were several MSc students, class of 1981-82, from The University of Birmingham attending the Conservation and Utilization of Plant Genetic Resources course in the Department of Plant Biology. Not all the students of that intake could take up the invitation to travel to Israel. Those from Bangladesh, Malaysia, and Indonesia for example were not permitted (under their national laws) to visit Israel, even though an invitation had been extended to all students regardless of nationality, and the Israeli authorities would have issued visas without a stamp in their passports.

I don’t remeber all the other participants. We must have been half a dozen or so from Birmingham, plus Bruce Tyler from the Welsh Plant Breeding Station (now part of the Institute of Biological, Environmental and Rural Sciences, IBERS, at Aberystwyth University), George Ayad from IBPGR, Zofia Bulinska-Radomska and one of her colleagues from the National Centre for Plant Genetic Resources, IHAR, near Warsaw, Poland, Luis Gusmão from Portugal (who attended a short course at Birmingham), and others whose names I cannot remember.

Standing, L-R: Zofia Bulinska-Radomska (Poland), Mike Jackson, ??, ??, ??, ??, George Ayad (Egypt, IBPGR), Rainer Freund (Germany), Bruce Tyler (WPBS), Amos Dinoor, ??, Luis Gusmao (Portugal). Front row, L-R: Krystina ?, ??, Brazilian MSc student, Gideon Ladizinsky, Ayfer Tan (Turkey), Margarida Texeira (Portugal).

Bruce Tyler, from the WPBS. An inveterate smoker, one of Bruce’s comments on almost anything was ‘He’s a cracker!’

We stayed at a kibbutz near to Rehovot, and were quite comfortable there. It was a short drive each day into the campus for the classroom activities, some lectures and practical classes. But we also made excursions from the north to the south of the country, and east to the Dead Sea to find crop wild relatives in their native habitats. I wonder, 35 years on, how many of those habitats exist. We travelled freely between Israel and parts of what are now the Palestine Authority controlled West Bank.

We had opportunity of seeing these wild relatives in what was essentially a living laboratory. Both Gideon and Amos, experts in their fields of crop diversity and domestication, and disease epidemiology in wild species, respectively, used many of these wild populations for their research and of their students.

My eyes were opened to the important role of ecology in these seasonally dry-wet landscapes, often on limestone, and the differences to be found between north- and south-facing slopes. I unfortunately no longer have some of the photos I took during that trip of the populations of wild barley, Hordeum spontaneum, that grew over large swathes of the landscape, looking to all intents and purposes like a field of cultivated barley. It was in populations like these, and of wild oats that Amos Dinoor studied the dynamics of disease spread and resistance.

Gideon had a wonderful way of linking species in different habitats, how they maintained they biological identity, often through flowering at different times of the day. I remember on one occasion as we walked through a mixture of oat species with different chromosome numbers, or ploidy. I asked Gideon the time, but he didn’t look at his watch. Instead, he picked a panicle of one of the oats alongside the path, and replied ‘It’s about 4:15 pm’. Then he looked at his watch. It was almost 4:15 pm! He was so familiar with the ecology of these species that, under defined conditions, he could predict when different species would flower. Remarkable! On the coast, south of Tel Aviv, we did look at disease in different wild species. I certainly learned a great deal from this course, and discussing crop evolution and domestication with these experts from the Fertile Crescent, and others like Daniel Zohary (who had published on the origin of lentils about the same time as me in the mid-1970s; he passed away in December 2016). Among the young scientists we met was Dani Zamir who pioneered the use of enzymes, or isozymes,to study the diversity of crops and their wild relatives, tomatoes in his case.

There was one interesting episode during the course. When teaching crop evolution to my Birmingham students, I encouraged them to analyse the evidence presented to account for the origin and evolution of different crop species, often based on conflicting hypotheses. So, it was natural for them to ask questions at the end of each lecture, and even question the interpretations they had heard. After just one or two sessions, and much to the consternation of my students, the ‘professors’ refused to take any questions. As I explained to my group, their hosts had worked on a range of species in depth, and were convinced that their interpretations were the correct (and only?) ones to be believed.  My students hadn’t been impolite or ‘aggressive’ in their questioning, just keen to explore more ideas.

We did also have opportunities for sight-seeing, around Jerusalem and to the Dead Sea, as well as understand some more about irrigation agriculture for which Israeli scientists and engineers had become renowned.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
¹ I remember the dates quite well, as they coincided with the invasion of the Falkland Islands in the South Atlantic by Argentina, and the course group had many discussions in the bar at night what the reaction of Margaret Thatcher’s government would be.

Navigating the Stourport Ring

I’m fascinated by canals. You have to admire the visionaries who financed and built the canals, and the armies of men who constructed them.

Most canals in England and Wales were dug by gangs of navvies in the 18th and early 19th centuries. However, within just a generation or two the canals were already in decline as an expanding railway network made transportation of goods cheaper and faster. The writing was on the wall for the canals once George Stephenson had demonstrated the power of steam locomotion.

The economic justification for and value of the canals waned, and they fell into disuse, and no longer navigable. However, in recent decades there has been a resurgence in the use of inland waterways. Today some 2000 miles of navigable waterways (canals and rivers) are managed by the Canal & River Trust, used mainly for pleasure traffic. Narrowboat holidays on the canals are very popular.

I have written several stories about the pleasure Steph and I take from walking along the towpath of the Worcester & Birmingham Canal, that runs north-south between Gas Street Basin in the center of Birmingham and the River Severn at Worcester. The canal is less than two miles east of our home in Bromsgrove in north Worcestershire. Our walks normally cover small sections of the towpath between Tardebigge Top Lock (No. 58) and Astwood Bottom Lock (No. 17), a distance of about 5½ miles.

We not only enjoy the surrounding countryside, tranquil for the most part (unless a mainline express is speeding by about half a mile to the west), but also watching the canal narrowboats navigating their way up and down the Tardebigge Flight, the longest flight (of 30 locks) in the country, some with a greater degree of proficiency than others. Some days it can be like Piccadilly Circus¹ with boats queuing up to pass through the locks.

Taking to the water
We have taken only one canal holiday, in the summer of 1983, when Steph, Hannah (just five years old), Philippa (15 months) and me took to the water for a week, to navigate the Stourport Ring.

The Ring, for our purposes, comprised four waterways:

If I remember correctly, the various links connecting the Staffordshire & Worcestershire Canal with the BCN via the Stourbridge Canal and the Dudley Canals were not navigable in 1983.

Setting out, and setting some rules
It was early July, and we took Hannah out of school for the week with readily-granted permission from Mr Richards, the headmaster at Finstall First School. That would be almost impossible nowadays. We had chosen a small, 4-berth narrowboat for our holiday, Blue Heron, from a hire-boat center operating out of Alvechurch, about 15 minutes from home. So, packing clothes for a week, and several boxes of groceries (including the inevitable wine boxes that were very popular in the 80s), we headed to Alvechurch to board our boat.

Blue Heron, with Steph at the helm, and Philippa in the bow.

After a familiarization tour of the boat, one of the marina staff joined us for the first three miles to the first lock on our trip, Tardebigge Top Lock. Not only would that be the first lock we’d encounter over the next week, but it was one of the deepest. So, the marina staff not only wanted to guide us safely through this lock but also to show us the rudiments of safe canal navigation.


Looking at the various photos I have included in this post, you might be forgiven for questioning our apparent lack of awareness of on-board safety. Only Hannah is wearing a life jacket, something that would not be allowed more than three decades later. At five years old, we had to set Hannah some strict limits how to move around the boat. At 15 months, Philippa was already walking, and would crawl and stagger around the cabin whenever we moored for a meal break or at night. With either Steph or me steering the boat, one of us had to operate the locks, raising/ lowering the paddles to empty or fill each lock, and open the lock gates. So it was important we knew where the girls were at all times.

To keep Philippa safe, we put her in a high chair in the bow of the boat, and with her mob cap for protection, and a good coating of sun cream, she was (mostly) quite happy watching the world go by at a leisurely 4 mph (the maximum speed permitted on the canals), waving to passers-by, or falling asleep when the fancy took her. Hannah would often sit beside whoever was steering at the stern of the boat, or ‘help’ with the locks.

Our journey continues
Having successfully passed through Tardebigge Top Lock, we headed down a few more on our own, before mooring for the night just below the Engine House, then a nightclub/restaurant (but now converted into luxury apartments), near Lock 55 or 54, in the early evening. With two small children on board, we had to get them fed and not too late bedded down for the night.

The view from Tardebigge Top Lock (No. 58).

Looking south on the Worcester & Birmingham Canal near Lock 54. The Malvern Hills can be seen in the far distance.

We spent all the next day completing the Tardebigge flight, but I’m not sure if we reached Worcester that same day, or took another day. Probably the latter. However, we spent one night at Worcester’s Diglis Basin before facing the River Severn.

It had become clear on the final stretch into Worcester that Hannah was not her usual perky self. And by bedtime, she had a temperature. The next morning she really looked very unwell, so she and I headed off into the center of Worcester in search of medical help. Although only 15 miles or so from home, it felt like 100 miles. I didn’t have our doctor’s telephone number with me. In any case, there were no mobile phones in 1983.

Nevertheless, we finally got to see a doctor (after completing a slew of NHS forms because we were being treated as ‘visitors’, not our own doctor), who diagnosed tonsillitis, and prescribed a course of antibiotics. It was remarkable how quickly those had an effect, because by late afternoon Hannah was feeling very much better, and almost back to her normal self by bedtime.

Diglis Basin in Worcester.

Our departure from Worcester was delayed until after lunch. We steeled ourselves for the section of our trip on the River Severn. We had good weather (and for the whole week), and no particular difficulties on the river itself. But we did have to pass through the Diglis Lock connecting Diglis Basin with the River Severn. This lock is wide and deep, and a challenge for two canal novices like Steph and myself. I don’t remember that this lock was assisted.

Once on the Severn we turned north, having a grandstand view from the center of the river of Worcester Cathedral on the east bank, and the city center.

There was just one other lock on the Severn itself, at Holt, to bypass a weir. That lock had lock keepers, and was electrically operated. Once we reached Stourport-on-Severn, it was time to leave the river and join the Staffordshire & Worcestershire Canal, for the next stage of our trip.

Entering the Staffordshire & Worcestershire Canal at Stourport-on-Severn.

This canal passes through the center of Kidderminster, a town famous world-wide for its carpet-making industry, then on through some lovely and peaceful red sandstone landscapes near Kinver in South Staffordshire.

We must have taken a couple of days to travel this section as far as Aldersley Junction, where we had to turn east and join the Birmingham Canals Navigation. However, as we needed water and some other supplies, we travelled a couple of miles further north, joining the Shropshire Union Canal at Autherley Junction for a very short distance before turning around to moor up for the night by Aldersley Junction. At Autherley Junction, there is a stop lock, with just a small height difference, a matter of inches, between the two canals to prevent drainage of one canal into the other.

The next section on the BCN was our penultimate day, taking us from Aldersley Junction, through the Black Country, Birmingham city center, and south again on to the Worcester & Birmingham Canal, mooring up north of Alvechurch in order to arrive back on time at the marina the next day.

From Aldersley Junction there is a flight of 21 locks that raise the canal 132 feet. We made an early start, with the idea of stopping about half way for breakfast. However, we discovered at about one third of the climb that a previous boat had left the lock paddles open and several pounds between the locks had drained completely. The photo below was taken on the Worcester & Birmingham Canal a couple of years ago when several refurbishment projects were underway. But it shows the sort of scene that greeted us that morning on the BCN. It must have taken an hour or more to restore water levels to the pounds before we could get on the move once again.

Travelling between Wolverhampton and Birmingham in 1983 was like passing through a desolate lunar landscape, with scenes of dereliction all around. This is part of the so-called Black Country of Dudley and Tipton, formerly an important industrial area. Today this whole area has been reclaimed for housing. Even the derelict warehouses along the canals in the center of Birmingham have either been refurbished as ‘desirable residences’ or demolished and replaced by new housing and offices.

Near Gas Street Basin in 1983.

Signposts on the canal, Wolverhampton to the left, Worcester to the right.

However in 1983, there was little shade along the banks of the BCN in the Black Country of Dudley and Tipton. It was a very hot day, and the sun was beating down. Because we had to travel more miles than usual, I had my lunch and tea breaks on the move, so to speak. Just as we crossed Gas Street Basin, the weather broke and there was a tremendous thunderstorm. With that, we decided to moor until the storm had passed, before continuing south, past the University of Birmingham Edgbaston campus, and through the one and a half mile long Wast Hills Tunnel (under the Lickey Hills) north of Alvechurch, one of the longest in the country. We moored close to where the A441 crosses the canal at Hopwood, and enjoyed an evening meal at the Hopwood House pub.

The University of Birmingham campus from the canal near Selly Oak.

Just passed through one of the tunnels north of Alvechurch.

With only a short distance to Alvechurch, we spent a couple of hours cleaning the boat on the final morning, getting everything shipshape and Bristol fashion, and arriving back at the marina by the noon deadline.

From there, it was just a case of hopping into our car, and within 15 minutes we were back home. A very enjoyable holiday and, as you can tell as you read this post, one that left me with long-lasting memories.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

¹ The phrase it’s like Piccadilly Circus is commonly used in the UK to refer to a place or situation which is extremely busy with people.

Outside the EU . . . even before Brexit

Imagine a little corner of Birmingham, just a couple of miles southwest of the city center. Edgbaston, B15 to be precise. The campus of The University of Birmingham; actually Winterbourne Gardens that were for many decades managed as the botanic garden of the Department of Botany / Plant Biology.

As a graduate student there in the early 1970s I was assigned laboratory space at Winterbourne, and grew experimental plants in the greenhouses and field. Then for a decade from 1981, I taught in the same department, and for a short while had an office at Winterbourne. And for several years continued to teach graduate students there about the conservation and use of plant genetic resources, the very reason why I had ended up in Birmingham originally in September 1970.

Potatoes at Birmingham
It was at Birmingham that I first became involved with potatoes, a crop I researched for the next 20 years, completing my PhD (as did many others) under the supervision of Professor Jack Hawkes, a world-renowned expert on the genetic resources and taxonomy of the various cultivated potatoes and related wild species from the Americas. Jack began his potato career in 1939, joining Empire Potato Collecting Expedition to South America, led by Edward Balls. Jack recounted his memories of that expedition in Hunting the Wild Potato in the South American Andes, published in 2003.

29 March 1939: Bolivia, dept. La Paz, near Lake Titicaca, Tiahuanaco. L to R: boy, Edward Balls, Jack Hawkes, driver.

The origins of the Commonwealth Potato Collection
Returning to Cambridge, just as the Second World War broke out, Jack completed his PhD under the renowned potato breeder Sir Redcliffe Salaman, who had established the Potato Virus Research Institute, where the Empire Potato Collection was set up, and after its transfer to the John Innes Centre in Hertfordshire, it became the Commonwealth Potato Collection (CPC) under the management of institute director Kenneth S Dodds (who published several keys papers on the genetics of potatoes).

Bolivian botanist Prof Martin Cardenas (left) and Kenneth Dodds (right). Jack Hawkes named the diploid potato Solanum cardenasii after his good friend Martin Cardenas. It is now regarded simply as a form of the cultivated species S. phureja.

Hawkes’ taxonomic studies led to revisions of the tuber-bearing Solanums, first in 1963 and in a later book published in 1990 almost a decade after he had retired. You can see my battered copy of the 1963 publication below.

Dalton Glendinning

The CPC was transferred to the Scottish Plant Breeding Station (SPBS) at Pentlandfield just south of Edinburgh in the 1960s under the direction of Professor Norman Simmonds (who examined my MSc thesis). In the early 1970s the CPC was managed by Dalton Glendinning, and between November 1972 and July 1973 my wife Steph was a research assistant with the CPC at Pentlandfield. When the SPBS merged with the Scottish Horticultural Research Institute in 1981 to form the Scottish Crops Research Institute (SCRI) the CPC moved to Invergowrie, just west of Dundee on Tayside. The CPC is still held at Invergowrie, but now under the auspices of the James Hutton Institute following the merger in 2011 of SCRI with Aberdeen’s Macaulay Land Use Research Institute.

Today, the CPC is one of the most important and active genetic resources collections in the UK. In importance, it stands alongside the United States Potato Genebank at Sturgeon Bay in Wisconsin, and the International Potato Center (CIP) in Peru, where I worked for more than eight years from January 1973.

Hawkes continued in retirement to visit the CPC (and Sturgeon Bay) to lend his expertise for the identification of wild potato species. His 1990 revision is the taxonomy still used at the CPC.

So what has this got to do with the EU?
For more than a decade after the UK joined the EU (EEC as it was then in 1973) until that late 1980s, that corner of Birmingham was effectively outside the EU with regard to some plant quarantine regulations. In order to continue studying potatoes from living plants, Jack Hawkes was given permission by the Ministry of Agriculture, Fisheries and Food (MAFF, now DEFRA) to import potatoes—as botanical or true seeds (TPS)—from South America, without them passing through a centralised quarantine facility in the UK. However, the plants had to be raised in a specially-designated greenhouse, with limited personnel access, and subject to unannounced inspections. In granting permission to grow these potatoes in Birmingham, in the heart of a major industrial conurbation, MAFF officials deemed the risk very slight indeed that any nasty diseases (mainly viruses) that potato seeds might harbour would escape into the environment, and contaminate commercial potato fields.

Jack retired in 1982, and I took up the potato research baton, so to speak, having been appointed lecturer in the Department of Plant Biology at Birmingham after leaving CIP in April 1981. One of my research projects, funded quite handsomely—by 1980s standards—by the Overseas Development Administration (now the Department for International Development, DFID) in 1984, investigated the potential of growing potatoes from TPS developed through single seed descent in diploid potatoes (that have 24 chromosomes compared with the 48 of the commercial varieties we buy in the supermarket). To cut a long story short, we were not able to establish this project at Winterbourne, even though there was space. That was because of the quarantine restrictions related to the wild species collections were held and were growing on a regular basis. So we reached an agreement with the Plant Breeding Institute (PBI) at Trumpington, Cambridge to set up the project there, building a very fine glasshouse for our work.

Then Margaret Thatcher’s government intervened! In 1987, the PBI was sold to Unilever plc, although the basic research on cytogenetics, molecular genetics, and plant pathology were not privatised, but transferred to the John Innes Centre in Norwich. Consequently our TPS project had to vacate the Cambridge site. But to where could it go, as ODA had agreed a second three-year phase? The only solution was to bring it back to Birmingham, but that meant divesting ourselves of the Hawkes collection. And that is what we did. However, we didn’t just put the seed packets in the incinerator. I contacted the folks at the CPC and asked them if they would accept the Hawkes collection. Which is exactly what happened, and this valuable germplasm found a worthy home in Scotland.

In any case, I had not been able to secure any research funds to work with the Hawkes collection, although I did supervise some MSc dissertations looking at resistance to potato cyst nematode in Bolivian wild species. And Jack and I published an important paper together on the taxonomy and evolution of potatoes based on our biosystematics research.

A dynamic germplasm collection
It really is gratifying to see a collection like the CPC being actively worked on by geneticists and breeders. Especially as I do have sort of a connection with the collection. It currently comprises about 1500 accessions of 80 wild and cultivated species.

Sources of resistance to potato cyst nematode in wild potatoes, particularly Solanum vernei from Argentina, have been transferred into commercial varieties and made a major impact in potato agriculture in this country.

Safeguarded at Svalbard
Just a couple of weeks ago, seed samples of the CPC were sent to the Svalbard Global Seed Vault (SGSV) for long-term conservation. CPC manager Gaynor McKenzie (in red) and CPC staff Jane Robertson made the long trek north to carry the precious potato seeds to the vault.

Potato reproduces vegetatively through tubers, but also sexually and produces berries like small tomatoes – although they always remain green and are very bitter, non-edible.

We rarely see berries after flowering on potatoes in this country. But they are commonly formed on wild potatoes and the varieties cultivated by farmers throughout the Andes. Just to give an indication of just how prolific they are let me recount a small piece of research that one of my former colleagues carried out at CIP in the 1970s. Noting that many cultivated varieties produced an abundance of berries, he was interested to know if tuber yields could be increased if flowers were removed from potato plants before they formed berries. Using the Peruvian variety Renacimiento (which means rebirth) he showed that yields did indeed increase in plots where the flowers were removed. In contrast, potatoes that developed berries produced the equivalent of 20 tons of berries per hectare! Some fertility. And we can take advantage of that fertility to breed new varieties by transferring genes between different strains, but also storing them at low temperature for long-term conservation in genebanks like Svalbard. It’s not possible to store tubers at low temperature.

Here are a few more photos from the deposit of the CPC in the SGSV.

I am grateful to the James Hutton Institute for permission to use these photos in my blog, and many of the other potato photographs displayed in this post.

 

“Oi’ll give it foive”

coat_of_arms_of_birmingham-svgBirmingham lies at the heart of England. It is the UK’s second city.

I first visited Birmingham in the 1960s. At that time I was living in Leek, just under 60 miles to the north in North Staffordshire. I moved to Birmingham in September 1970 when I began my graduate studies in the Department of Botany at The University of Birmingham, never envisaging that I would return a decade later to join the staff of the same department. Since 1981, my wife and I have lived in Bromsgrove, some 13 miles south of Birmingham in northeast Worcestershire (with a 19 year break while I worked in the Philippines).

birmingham

Birmingham city center, overlooking New Street Station, the Bull Ring Shopping Centre and Rotunda, and the BT Tower, and looking towards the Black Country further on.

Birmingham is one of seven metropolitan boroughs that make up the County of  West Midlands, from Wolverhampton in the northwest to Solihull and Coventry in the southeast, and encompassing the area known as the Black Country lying to the west of Birmingham proper.

To the ears of someone from outside the region, everyone in the West Midlands speaks with the same ‘Brummie‘ accent, rated the least appealing in the nation. Shame! There are subtle differences across the region, but I can understand why most outsiders maybe hear just a single accent. You can read (and hear) what one American writer has to say about ‘Brummie’ here.

It is rather interesting to note that one Brummie, accent and all, has made it big on US television. Comedian John Oliver came to the fore on The Daily Show with Jon Stewart, and now in his own Last Week Tonight with John Oliver. Here’s a classic Oliver monologue about Donald Trump.

And there have now been three series of the cult drama Peaky Blinders about a gangster family in Birmingham just after the ending of the First World War. Again, it’s amazing that this became so popular on the other side of The Pond, given the strong Brummie accents, strong language, and explicit sexual content.

So what has me waxing lyrical this morning about all things Brummie? Well, last night, Heavy Metal band Black Sabbath (of Ozzy Osbourne fame) performed the second of two concerts in Birmingham at the end of an 81-date tour that began in January last year. After 50 years, Black Sabbath have hung up their guitars and microphones. Yesterday’s concert was the final one.

Birmingham is the birthplace of Heavy Metal, but it’s not a genre I appreciate. Nevertheless, this story about Black Sabbath got me thinking.

The ‘Merseyside Sound’ of the 1960s, 1970s is rightly renowned worldwide for The Beatles, Gerry and the Pacemakers, Cilla Black, just to mention three of a very long list.

However, there was—and is—a vibrant ‘Birmingham Sound‘, with musicians and bands having an enormous impact everywhere. Do any come immediately to mind? No? Well, among the most famous are: Jeff Lynne and ELO, Roy Wood (in The Move and Wizzard), The Moody Blues, Duran DuranUB40, Dexys Midnight Runners, Slade, even Musical Youth. As anyone who follows my blog will know, I’m a great Jeff Lynne-ELO-Traveling Wilburys fan.

Fleetwood Mac’s Christine McVie was born in Lancashire, but from early childhood was raised in Birmingham. Led Zeppelin’s Robert Plant was born in West Bromwich in the Black Country, but grew up in Kidderminster, nine miles west of Bromsgrove.

So let’s enjoy some of the Brummie talent.

Flowers in the Rain was the first record to be played at the launch of BBC Radio 1 by DJ Tony Blackburn in 1967.

So what’s this Oi’ll give it foive business?

In the early to mid 1960s, there was a TV series, Thank Your Lucky Stars produced by the Birmingham-based commercial channel, ATV, and broadcast nationwide. In the show’s Wikipedia page it states: Audience participation was a strong feature of Thank Your Lucky Stars, and the Spin-a-Disc section, where a guest DJ and three teenagers reviewed three singles, is a very well remembered feature of the show. Generally American singles were reviewed. It was on this section that Janice Nicholls appeared. She was a former office clerk from the English Midlands who became famous for the catchphrase “Oi’ll give it foive” which she said with a strong Black Country accent.

Janice Nicholls released this dreadful single in 1963, but at least you can hear her say Oi’ll give it foive.

Among the notable comedians and actors proudly from the region are Sir Lenny Henry (who hails from Dudley in the Black Country), and Jasper Carrott and Julie Walters, who are true Brummies.

 

 

 

 

 

 

Plant Genetic Resources: Our challenges, our food, our future

phillips-jade

Jade Phillips

That was the title of a one day meeting on plant genetic resources organized by doctoral students, led by Jade Phillips, in the School of Biosciences at The University of Birmingham last Thursday, 2 June. And I was honoured to be invited to present a short talk at the meeting.

Now, as regular readers of my blog will know, I began my career in plant genetic resources conservation and use at Birmingham in September 1970, when I joined the one year MSc course on genetic conservation, under the direction of Professor Jack Hawkes. The course had been launched in 1969, and 47 years later there is still a significant genetic resources presence in the School, even though the taught course is no longer offered (and hasn’t accepted students for a few years). Staff have come and gone – me included, but that was 25 years ago less one month, and the only staff member offering research places in genetic resources conservation is Dr Nigel Maxted. He was appointed to a lectureship at Birmingham (from Southampton, where I had been an undergraduate) when I upped sticks and moved to the International Rice Research Institute (IRRI) in the Philippines in 1991.

image

Click on this image for the full program and a short bio of each speaker.

Click on each title below; there is a link to each presentation.

Nigel Maxted (University of Birmingham)
Introduction to PGR conservation and use

Ruth Eastwood (Royal Botanic Gardens, Kew – Wakehurst Place)
‘Adapting agriculture to climate change’ project

Holly Vincent (PhD student, University of Birmingham)
Global in situ conservation analysis of CWR

Joana Magos Brehm (University of Birmingham)
Southern African CWR conservation

Mike Jackson
Valuing genebank collections

Åsmund Asdal (NordGen)
The Svalbard Global Seed Vault

Neil Munro (Garden Organic)
Heritage seed library

Maria Scholten
Natura 2000 and in situ conservation of landraces in Scotland: Machair Life (15 minute film)

Aremi Contreras Toledo, Maria João Almeida, and Sami Lama (PhD students, University of Birmingham)
Short presentations on their research on maize in Mexico, landraces in Portugal, and CWR in North Africa

Julian Hosking (Natural England)
Potential for genetic diversity conservation – the ‘Fifth Dimension’ – within wider biodiversity protection

I guess there were about 25-30 participants in the meeting, mainly young scientists just starting their careers in plant genetic resources, but with a few external visitors (apart from speakers) from the Millennium Seed Bank at Kew-Wakehurst Place, the James Hutton Institute near Dundee, and IBERS at Aberystwyth.

The meeting grew out of an invitation to Åsmund Asdal from the Nordic Genetic Resources Center (NordGen) to present a School of Biosciences Thursday seminar. So the audience for his talk was much bigger.

asmund

Åsmund is Coordinator of Operation and Management for the Svalbard Global Seed Vault, and he gave a fascinating talk about the origins and development of this important global conservation facility, way above the Arctic Circle. Today the Vault is home to duplicate samples of germplasm from more than 60 depositor genebanks or institutes (including the international collections held in the CGIAR genebank collections, like that at IRRI.

Nigel Maxted’s research group has focused on the in situ conservation and use of crop wild relatives (CWR), although they are also looking at landrace varieties as well. Several of the papers described research linked to the CWR Project, funded by the Government of Norway through the Crop Trust and Kew. Postdocs and doctoral students are looking at the distributions of crop wild relatives, and using GIS and other sophisticated approaches that were beyond my comprehension, to determine not only where there are gaps in distributions, lack of germplasm in genebank collections, but also where possible priority conservation sites could be established. And all this under the threat of climate change. The various PowerPoint presentations demonstrate these approaches—which all rely on vast data sets—much better than I can describe them. So I encourage you to dip into the slide shows and see what this talented group of scientists has been up to.

Neil Munro from Garden Organic described his organization’s approach to rescue and multiply old varieties of vegetables that can be shared among enthusiasts.

n_munro

Seeds cannot be sold because they are not on any official list of seed varieties. What is interesting is that one variety of scarlet runner bean has become so popular among gardeners that a commercial seed company (Thompson & Morgan if I remember what he said) has now taken  this variety and selling it commercially.

julian

Julian Hosking from Natural England gave some interesting insights into how his organization was looking to combine the conservation of genetic diversity—his ‘Fifth Dimension’—with conservation of natural habitats in the UK, and especially the conservation of crop wild relatives of which there is a surprisingly high number in the British flora (such as brassicas, carrot, and onions, for example).

So, what about myself? When I was asked to contribute a paper I had to think hard and long about a suitable topic. I’ve always been passionate about the use of plant genetic diversity to increase food security. I decided therefore to talk about the value of genebank collections, how that value might be measured, and I provided examples of how germplasm had been used to increase the productivity of both potatoes and rice.

m_jackson

Nicolay Vavilov is a hero of mine

Although all the speakers developed their own talks quite independently, a number of common themes emerged several times. At one point in my talk I had focused on the genepool concept of Harlan and de Wet to illustrate the biological value (easy to use versus difficult to use) of germplasm in crop breeding.

Jackson FINAL - Valuing Genebank Collections

In the CWR Project research several speakers showed how the genepool concept could be used to set priorities for conservation.

Finally, there was one interesting aspect to the meeting—from my perspective at least. I had seen the titles of all the other papers as I was preparing my talk, and I knew several speakers would be talking about future prospects, especially under a changing climate. I decided to spend a few minutes looking back to the beginning of the genetic conservation movement in which Jack Hawkes was one of the pioneers. What I correctly guessed was that most of my audience had not even been born when I started out on my genetic conservation career, and probably knew very little about how the genetic conservation movement had started, who was involved, and what an important role The University of Birmingham had played. From the feedback I received, it seems that quite a few of the participants were rather fascinated by this aspect of my talk.